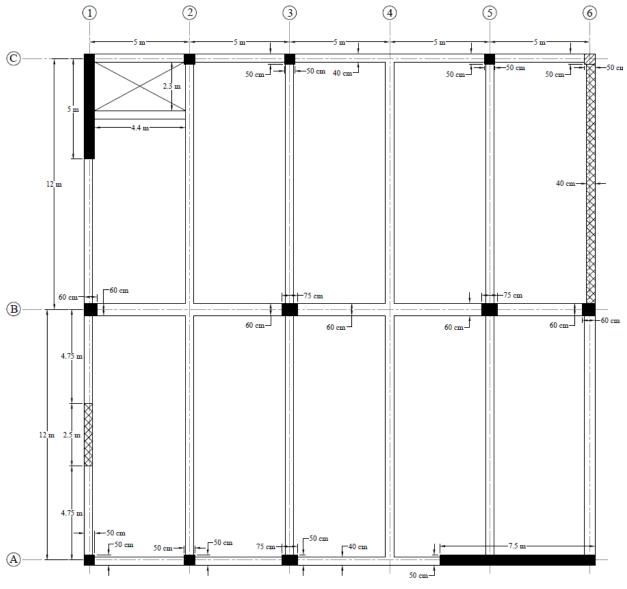
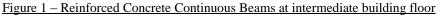


Reinforced Concrete Continuous Beam Analysis and Design (CSA A23.3-14)




Reinforced Concrete Continuous Beam Analysis and Design (CSA A23.3-14)

A structural reinforced concrete continuous beams at an intermediate building floor provides gravity load resistance for the applied dead and live loads.

The continuous beam along grid 3 is selected to demonstrate the analysis and design of continuous T-beams (structural analysis, flexural design, shear design, deflection checks) and the results of hand calculations are then compared with numerical analysis results obtained from the <u>spBeam</u> engineering software program.

Additionally, the boundary conditions for each T-beam (Grids 1 thru 6 and A thru C) are selected to demonstrate and explore in detail the actual interaction between the beam and the supporting members. Similar evaluation is performed using computer software to reflect recommended modeling procedures in <u>spBeam</u> to obtain the most accurate results.

Contents

1.	Preli	minar	y Member Sizing	3
2.	Load	and	Load combination	3
3.	Struc	tural	Analysis by Moment Distribution	3
	3.1.	Fle	xural stiffness of beams, K _b	3
	3.2.	Fle	xural stiffness of column members, K _c	4
	3.3.	Bea	am joint distribution factors, DF	5
	3.4.	Mo	ment Distribution	5
	3.5.	Fac	tored moments used for Design	7
4.	Flexu	ıral D	Design	7
5.	Shear	r Des	ign	.11
6.	Defle	ection	Control (Serviceability Requirements)	.12
	6.1.	Imr	nediate (Instantaneous) Deflections	.13
	e	5.1.1.	PCA Superposition Procedure	.16
	e	5.1.2.	Simplified Superposition Procedure	.17
	e	5.1.3.	CSA Simplified Procedure	.18
	6.2.	Tin	ne-Dependent (Long-Term) Deflections (Δ_{lt})	.19
7.	Conti	inuou	s Beam Analysis and Design – spBeam Software	.19
8.	Desig	gn Re	sults Comparison and Conclusions	.35
	8	3.1.	Deflection calculation methods:	.36
9.	Boun	dary	condition effects on continuous beam deflections	.36
	9	9.1.	Beam supported by columns- Grid 3	.37
	9	ə.2.	Beam supported by transverse beams - Grid 4	.37
	9	9.3.	Beam supported by transverse walls - Grid 5	.39
	9	9.4.	Beam supported by masonry bearing walls - Grid C	.39
	9	9.5.	Beam supported by longitudinal walls - Grids 1, 6, and A	.39

Code

Design of Concrete Structures (CSA A23.3-14) and Explanatory Notes on CSA Group standard A23.3-14 "Design of Concrete Structures"

Reference

CAC Concrete Design Handbook, 4th Edition, Cement Association of Canada

Reinforced Concrete Mechanics and Design, First Canadian Edition, 2000, James MacGregor and Michael Bartlett, Prentice Hall.

Notes on ACI 318-11 Building Code Requirements for Structural Concrete, Twelfth Edition, 2013 Portland Cement Association

spBeam Engineering Software Program Manual v5.00, STRUCTUREPOINT, 2015

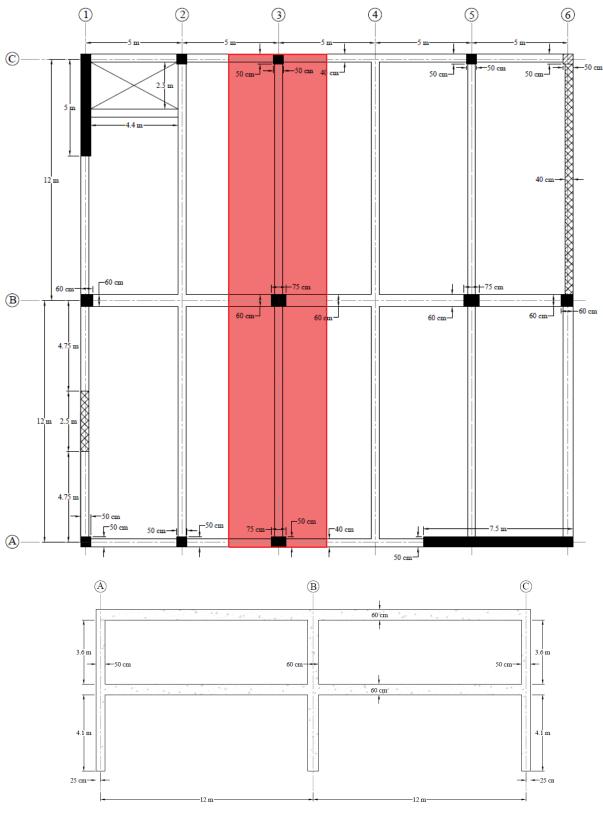
Design Data

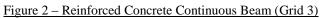
 $f_c' = 25$ MPa normal weight concrete (w_c = 24 kN/m³)

 $f_y = 400 \text{ MPa}$

Superimposed dead load, $SDL = 1 \text{ kN/m}^2$

Typical Floor Level, Live load, $L_o = 2.5 \text{ kN/m}^2$


Typical Floor Level, Reduced Live load, $L_o = 1.6 \text{ kN/m}^2$



CONCRETE SOFTWARE SOLUTIONS

Solution

CONCRETE SOFTWARE SOLUTIONS

CSA A23.3-14 (Annex C, Table C.1a)

1. Preliminary Member Sizing

Check the minimum beam depth requirement of <u>CSA A23.3-14 (9.8.2.1)</u> to waive deflection computations. Using the minimum depth for non-prestressed beams in <u>Table 9.2</u>.

End Span:
$$h = \frac{l_n}{18} = \frac{11,500}{18.5} = 639 \text{ mm}$$

CSA A23.3-14 (Table 9.2)

Therefore, since $h_{min} = 639 \text{ mm} > h = 600 \text{ mm}$ the preliminary beam depth does not satisfy the minimum depth requirement, and the beam deflection need to be checked.

2. Load and Load combination

For the factored Load

$$w_f = 1.25D + 1.5L$$

$$D = 5 \times (1 + 0.2 \times 24) + (0.4 \times 0.4 \times 24) = 32.84 \text{ kN/m}$$

$$L = 1.6 \times 5 = 8 \text{ kN/m}$$

$$w_r = 1.25 \times 32.84 + 1.5 \times 8 = 53.05 \text{ kN/m}$$

3. Structural Analysis by Moment Distribution

The T-beam will be analyzed by hand using the moment distribution method to determine design moment and shear values. Members stiffnesses, carry over factors COF, and fixed-end moments FEM for the beam and column members are determined as follows:

3.1. Flexural stiffness of beams, Kb

$$K_b = 4 \times \frac{E_c I_b}{L_b} = 4 \times \frac{25684 \times 1.52 \times 10^{10}}{12000} = 1.3 \times 10^{11} \text{ N.mm}$$

Where I_b is calculated for the beam as a T-beam section with b_{eff} equals to:

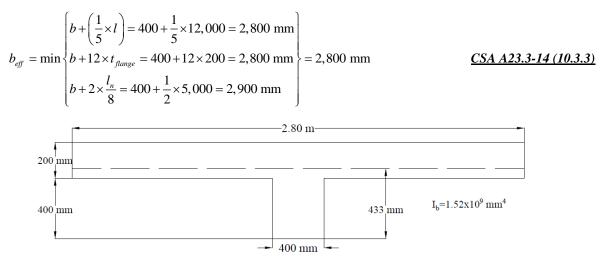


Figure 3 - Moment of inertia calculation for T-beam section

$$E_c = (3,300\sqrt{f_c} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5} = (3,300\sqrt{25} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 25,684 \text{ MPa} \quad \underline{CSA \ A23.3-14(8.6.2.2)}$$

Carry-over factor COF = 0.5

Fixed-end moment, $FEM = \frac{w_f \times L_b^2}{12} = \frac{53.05 \times 12,000^2}{12} = 636.6 \text{ kN.m}$

3.2. Flexural stiffness of column members, Kc

For the Top Exterior Column:

$$COF_{c,top} = 0.50$$

$$K_{c,top} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{25,684 \times 5.21 \times 10^9}{4200} = 1.27 \times 10^{11} \text{ N.mm}$$
Where $I_c = \frac{c_2 \times c_1^3}{12} = \frac{500 \times 500^3}{12} = 5.21 \times 10^9 \text{ mm}^4$

$$E_c = (3,300\sqrt{f_c} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5} = (3,300\sqrt{25} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 25,684 \text{ MPa} \quad \underline{CSA \ A23.3-14(8.6.2.2)}$$

 $L_c = 4200 \text{ mm}$

For the Bottom Exterior Column:

$$COF_{c,bottom} = 0.50$$

$$K_{c,bottom} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{25,684 \times 5.21 \times 10^9}{4400} = 1.22 \times 10^{11} \text{ N.mm}$$
Where $I_c = \frac{c_2 \times c_1^3}{12} = \frac{500 \times 500^3}{12} = 5.21 \times 10^9 \text{ mm}^4$

$$L_c = 4400 \text{ mm}$$

For the Top Interior Column:

 $COF_{c,top} = 0.50$

$$K_{c,top} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{25,684 \times 1.35 \times 10^{10}}{4200} = 3.30 \times 10^{11} \text{ N.mm}$$

Where
$$I_c = \frac{c_2 \times c_1^3}{12} = \frac{750 \times 600^3}{12} = 1.35 \times 10^{10} \text{ mm}^4$$

 $L_c = 4200 \text{ mm}$

For the Bottom Interior Column:

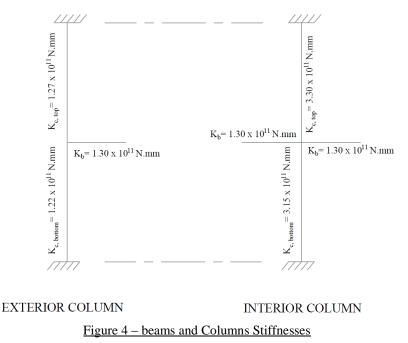
$$COF_{c,bottom} = 0.50$$

 $K_{c,bottom} = 4 \times \frac{E_c I_c}{L_c} = 4 \times \frac{25,684 \times 1.35 \times 10^{10}}{4400} = 3.15 \times 10^{11} \text{ N.mm}$

Where
$$I_c = \frac{c_2 \times c_1^3}{12} = \frac{750 \times 600^3}{12} = 1.35 \times 10^{10} \text{ mm}^4$$

 $L_c = 4400 \text{ mm}$

3.3. Beam joint distribution factors, DF


At exterior joint,

$$DF = \frac{1.30 \times 10^{11}}{(1.30 \times 10^{11} + 1.27 \times 10^{11} + 1.22 \times 10^{11})} = 0.340$$

At interior joint,

$$DF = \frac{1.30 \times 10^{11}}{(1.30 \times 10^{11} + 1.30 \times 10^{11} + 3.30 \times 10^{11} + 3.15 \times 10^{11})} = 0.140$$

COF for beams =0.5

3.4. Moment Distribution

When the live load is uniformly distributed and does not exceed three-quarters of the specified dead load or the nature of the live load is such that all panels will be loaded simultaneously, the maximum factored moments may be assumed to occur at all sections with full factored live load on the entire slab system.

CSA A23.3-14 (13.8.4.2)

$$\frac{L}{D} = \frac{1.6}{(1+0.6\times24)} = 0.16 < \frac{3}{4}$$

Moment Distribution computations are shown in the following Table. Counterclockwise rotational moments acting on the member ends are taken as positive. Positive span moments are determined from the following equation:

$$M_{u,midspan} = M_o - \frac{(M_{uL} + M_{uR})}{2}$$

Where M_o is the moment at the midspan for a simple beam.

When the end moments are not equal, the maximum moment in the span does not occur at the midspan, but its value is close to that midspan for this example (see results comparison section).

Positive moment in span 1-2:

$$M_f = 53.05 \times \frac{12^2}{8} - \frac{418.1 + 745.9}{2} = 372.9 \text{ kN.m}$$

Table 1 -	Moment Dis	tribution for (Continuous	Beam
	<u> </u>		`	
+	1	2		3
Joint	1	2		3
Member	1-2	2-1	2-3	3-2
DF	0.34	0.14	0.14	0.34
COF	0.50	0.50	0.50	0.50
FEM	636.6	-636.6	636.6	-636.6
Dist	-218.5	0.0	0.0	218.5
CO	0.0	-109.3	109.3	0.0
Dist	0.00	0.00	0.00	0.00
M, kN.m	418.1	-745.9	745.9	-418.1
Midspan M, kN.m	37	2.9	37	2.9

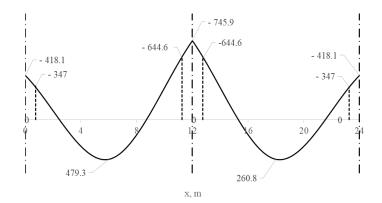
Except when approximate values for bending moments are used, the negative moments at the supports of continuous flexural members calculated by elastic analysis for any assumed loading arrangement may each be increased or decreased by not more than (30 - 50c / d)%, but not more than 20%, and the modified negative moments shall be used for calculating the moments at sections within the spans. **CSA A23.3-14 (9.2.4)**

The moment redistribution is often utilized for the investigation of existing structures for conditions such as change of use, additional loading, or verifying adequacy for the latest design code. In these conditions, any reserve capacity from existing reinforcement layout at mid-span (or support) of a span may be utilized to compensate for the inadequacy of the support (or mid-span) of the same span.

The moment redistribution can also be utilized in the design of a new structure. One such example of its application may help reduce the negative moment at an interior support and corresponding top reinforcement while increasing the positive moment at mid-span. The advantage of this may be the alleviation of the congestion of rebar at support top regions.

The calculation of moment redistribution is a tedious process especially while considering live load patterning. The procedure gets far more complicated if point loads or partial line loads are present. The <u>spBeam</u> software program performs the moment redistribution calculations with speed and accuracy.

This example does not cover the moment redistribution. However, a detailed demonstration of this method can be found in "Continuous Beam Design with Moment Redistribution (CSA A23.3-14)" example.


3.5. Factored moments used for Design

Positive and negative factored moments for the continuous beam are plotted in the following Figure. The negative moments used for design are taken at the faces of supports (rectangle section or equivalent rectangle for circular or polygon sections) but not at distances greater than 0.175 l from the centers of supports.

CSA A23.3-14 (13.8.5.1)

 $\frac{500}{1000} = 0.5 \text{ m} < 0.175 \times 12 = 2.1 \text{ m} \text{ (use face of supporting location for interior column)}$

Moment Diagram (kN.m)

 $\frac{500}{1000} = 0.5 \text{ m} < 0.175 \times 12 = 2.1 \text{ m} \text{ (use face of supporting location for interior column)}$

Figure 5 - Positive and Negative Design Moments for the Continuous Beam

4. Flexural Design

For this beam, the moment at the exterior face of the interior support governs the design as shown in the previous Figure.

Calculate the required reinforcement to resist the interior support negative moment:

$$M_f = 664.6 \,\mathrm{kN.m}$$

Use 30M bars with 30 mm concrete cover per <u>CSA A23.3-14 (Table 17)</u>. The distance from extreme compression fiber to the centroid of longitudinal tension reinforcement, d, is calculated below:

 $d = 600 - (30 + 0.5 \times 30) = 555 \text{ mm}$

In this example, jd is assumed equal to 0.728d. The assumption will be verified once the area of steel in finalized.

 $jd = 0.728 \times d = 0.728 \times 555 = 404 \text{ mm}$

b = 400 mm

The required reinforcement at initial trial is calculated as follows:

$$A_{s} = \frac{M_{f}}{\varphi_{s}f_{y}jd} = \frac{664.6 \times 10^{6}}{0.85 \times 400 \times 404} = 4,692 \text{ mm}^{2}$$

$$\alpha_{1} = 0.85 - 0.0015f_{c}^{'} = 0.81 > 0.67$$

$$\beta_{1} = 0.97 - 0.0025f_{c}^{'} = 0.91 > 0.67$$

$$CSA \ A23.3 - 14 \ (10.1.7)$$

$$CSA \ A23.3 - 14 \ (10.1.7)$$

Recalculate 'a' for the actual A_s = 4,692 mm²: $a = \frac{\phi_s A_s f_y}{\phi_c \alpha_1 f'_c b} = \frac{0.85 \times 4,692 \times 400}{0.65 \times 0.81 \times 25 \times 400} = 302 \text{ mm}$

$$c = \frac{a}{\beta_1} = \frac{302}{0.81} = 333 \text{ mm}$$

The tension reinforcement in flexural members shall not be assumed to reach yield unless:

$$\frac{c}{d} \leq \frac{700}{700 + f_y}$$

$$\frac{333}{555} = 0.60 \leq 0.64$$

$$jd = d - \frac{a}{2} = 0.728 \ d$$
Therefore, the assumption that tension reinforcements will yield and *jd* equals to 0.728*d* is valid.

The minimum reinforcement shall not be less than

$$A_{s,\min} = \frac{0.2 \times \sqrt{f_c^{'}}}{f_y} \times b_t \times h = \frac{0.2\sqrt{25}}{400} \times 1,000 \times 600 = 1,500 \text{ mm}^2$$
CSA A23.3-14 (10.5.1.2)

Where b_t is the width of the tension zone of the section considered. For T-beams with the flange in tension, b_t need not exceed 1.5bw for beams with a flange on one side of the web or 2.5b_w for beams with a flange on both sides of the web. <u>CSA A23.3-14 (10.5.1.2)</u>

Provide 7 – 30 M bars:

$$A_{s,prov} = 7 \times 700 = 4,900 \text{ mm}^2 > A_{s,req} = 4,692 \text{ mm}^2$$

The reinforcement is selected based on the closest $A_{s,provided}$ to $A_{s,required}$. However, moment redistribution can be used to reduce the A_s (section 3.4). Furthermore, other bar size and detailing options can be selected (e.g. 10 - 25M in one or two layers) to overcome any construction issues or preferences.

Maximum spacing allowed:

$$s = \max \begin{cases} 3t_{slab} \\ 500 \text{ mm} \end{cases} = 500 \text{ mm}$$

Check the requirement for distribution of flexural reinforcement to control flexural cracking:

$$z = f_s (d_c A)^{1/3}$$
 CSA A23.3-14 (10.6.1)

CAC Concrete Design Handbook – 4th Edition (2.3.2)

$$A = 2yb_w / 8 = 2 \times 45 \times 400 / 8 = 4,500 \text{ mm}^2$$

$$d_c = 30 + 11.3 + \frac{35.7}{2} = 59 \,\mathrm{mm}$$

~

.

Use $f_s = 0.6 f_y = 240$ MPa

 $z = 240(59 \times 4,500)^{1/3} = 15,425$ N/mm < 30,000 N/mm

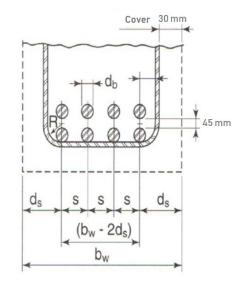


Figure 6 - Maximum number of bars in beams

Where flanges are in tension, part of the flexural tension reinforcement shall be distributed over an overhanging flange width equal to 1/20 of the beam span, or the width specified in Clause 10.3 of CSA A23.3-14, whichever is smaller. The area of this reinforcement shall be not less than 0.004 times the gross area of the overhanging flange. <u>CSA A23.3-14 (10.5.3.1)</u>

$$b = \min \left\{ \begin{aligned} b_{eff} &= 2,800 \text{ mm} \\ 400 + 2 \times \frac{l}{20} &= 400 + 2 \times \frac{12,000}{20} = 1,600 \text{ mm} \end{aligned} \right\} = 1,600 \text{ mm}$$

Check if s_{provided} is greater than the minimum center to center spacing, s_{min} where

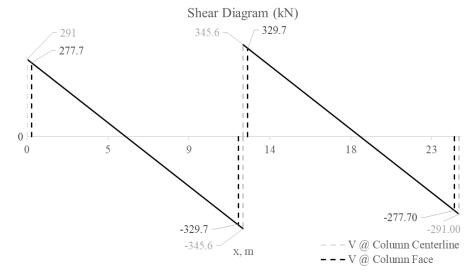
$$s_{\min} = \max \begin{cases} d_b \\ 1.4 \times \max. agg. \\ 30 \text{ cm} \end{cases}$$

Where the maximum aggregate size is 1.9 cm

$$s_{\min} = \max \begin{cases} 1.4 \times 30\\ 1.4 \times 19\\ 30 \text{ mm} \end{cases} = 42 \text{ mm}$$

Since the spacing provided is greater than 42 mm Therefore, 7 - 30M bars are <u>*o.k.*</u>

All the values in the following table are calculated based on the procedure outlined above.


Table 2 – Reinforcing Design Summary									
		End Span							
	Exterior Negative	Positive	Interior Negative						
Design Moment, M _f (kN.m)	340.0	372.9	644.6						
Effective depth, d (mm)	555	555	555						
$A_{s,req} (mm^2)$	2092	2014	4692						
A _{s,min} (mm ²)	1500	600	1500						
Reinforcement	5 - 30M*	3 - 30M	7 - 30M						
Spacing provided (mm)	47.5	125	47.5						
* Number of bars governed by maximum	m allowable spacing								

CONCRETE SOFTWARE SOLUTIONS

5. Shear Design

Structu

From the following Figure, the shear value in end span at face of the interior support governs.

$$V_f = \frac{-745.9 + 418.1 + \frac{w_f \times l}{2}}{l} = -345.6 \text{ kN}$$

The design shear at a distance, d_v, away from the face of support,

 $d_v = Max \ (0.9d, 0.72h) = Max \ (0.9 \times 555, 0.72 \times 600) = 499.5 \,\mathrm{mm}$ <u>CSA A23.3-14 (3.2)</u>

$$V_f = 345.6 - 53.05 \times \left(\frac{300 + 499.5}{1000}\right) = 305.85 \text{ kN}$$

The factored shear resistance shall be determined by

$$V_r = V_c + V_s + V_p = V_c$$

$$\underline{CSA \ A23.3-14 \ (Eq. \ 11.4)}$$

However, V_r shall not exceed

$$V_{r,\max} = 0.25\varphi_c f_c b_w d_v + V_p$$

CSA A23.3-14 (Eq. 11.5)

 $V_{r,\text{max}} = 0.25 \times 0.65 \times 25 \times 400 \times 499.5 / 1000 = 811.7 \text{ kN} \rightarrow \therefore$ section is adequate

Shear strength provided by concrete

$$V_c = \varphi_c \lambda \beta \sqrt{f_c b_w} d_v \qquad CSA A23.3-14 (Eq. 11.5)$$

$$\beta = 0.18$$

$$V_c = 0.65 \times 1 \times 0.18 \times \sqrt{25} \times 400 \times \frac{499.5}{1,000} = 116.9 \text{ kN}$$

Since $V_f > V_c$, shear reinforcement is required.

Try 10M, two-leg stirrups ($A_v = 200 \text{ mm}^2$).

The nominal shear strength required to be provided by shear reinforcement is

CSA A23.3-14 (11.3.6.3)

CSA A23.3-14 (11.3.6.2)

CSA A23.3-14 (11.2.8.2)

CSA A23.3-14 (11.3.8.1)

CSA A23.3-14 (11.2.8.1)

 $V_s = V_f - V_c = 305.85 - 117.4 = 188.46$ kN

$$\left(\frac{A_v}{s}\right)_{req} = \frac{V_f - V_c}{\phi \times f_{yt} \times d_v \times \cot \theta} = \frac{188.97 \times 1000}{0.85 \times 400 \times 499.5 \times \cot 35^\circ} = 0.78 \text{ mm}^2/\text{ mm}$$
CSA A23.3-14 (11.3.5.1)

Where
$$\theta = 35^{\circ}$$

$$s_{req} = \frac{A_v}{\left(\frac{A_v}{s}\right)_{req}} = \frac{200}{0.78} = 256 \text{ mm}$$

$$\left(\frac{A_{\nu}}{s}\right)_{\min} = \frac{0.06 \times \sqrt{f_c} \times b_w}{f_{yt}}$$
$$\left(\frac{A_{\nu}}{s}\right)_{\min} = \frac{0.06 \times \sqrt{25} \times 400}{400} = 0.30 \text{ mm}^2/\text{mm}$$

Check whether the required spacing based on the shear demand meets the spacing limits for shear reinforcement

$$0.125\lambda \varphi_c f'_c b_w d_v = 405.8 < V_f$$
 CSA A23.3-14 (11.3.8.3)

Therefore, maximum stirrup spacing shall be the smallest of $0.7d_v$ and 600 mm.

$$s_{\text{max}} = lesser \ of \begin{bmatrix} 0.7d_v \\ 600 \ \text{mm} \end{bmatrix} = lesser \ of \begin{bmatrix} 0.7 \times 449.5 \\ 600 \ \text{mm} \end{bmatrix} = lesser \ of \begin{bmatrix} 350 \ \text{mm} \\ 600 \ \text{mm} \end{bmatrix} = 350 \ \text{mm}$$

Use 10M @ 250 mm stirrups

$$V_f = \frac{\phi_s \times A_v \times f_y \times d_v \times \cot \theta}{s} + V_c$$
 CSA A23.3-14 (11.3.3 and 11.3.5.1)

$$V_r = \frac{0.85 \times 200 \times 400 \times 499.5 \times \cot 35^{\circ}}{250 \times 1000} + 116.9 = 194 + 116.9 = 310.92 \text{ kN} > V_f = 305.85 \text{ kN}$$
 o.k.

Compute where V_f is equal to V_c , and the stirrups can be stopped

$$x = \frac{V_f - V_c}{V_f} \times \frac{l}{2} = \frac{305.85 - 116.9}{305.85} \times \frac{12}{2} = 3.7 \text{ m}$$

At interior end of the exterior span, use 15 - 10M @ 250 mm o.c., Place 1st stirrup 125 mm from the face of the column.

6. Deflection Control (Serviceability Requirements)

Since the preliminary beam depth did not meet minimum depth requirement, the deflection calculations are required. The calculation of immediate and time-dependent deflections are covered in detail in this section for illustration and comparison with spBeam model results for continuous T-beam.

6.1. Immediate (Instantaneous) Deflections

Elastic analysis for three service load levels $(D, D + L_{sustained}, D+L_{Full})$ is used to obtain immediate deflections of the continuous T-beam in this example. However, other procedures may be used if they result in predictions of deflection in reasonable agreement with the results of comprehensive tests.

The effective moment of inertia (I_e) is used to account for the cracking effect on the flexural stiffness of the beam. I_e for uncracked section ($M_{cr} > M_a$) is equal to I_g . When the section is cracked ($M_{cr} < M_a$), then the following equation should be used:

$$I_{e} = I_{cr} + \left(I_{g} - I_{cr}\right) \left(\frac{M_{cr}}{M_{a}}\right)^{3} \le I_{g}$$
CSA A23.3-14 (Eq. 9.1)

Where:

 M_a = Maximum moment in member due to service loads at stage deflection is calculated.

The effective moment of inertia procedure described in the Code is considered sufficiently accurate to estimate deflections. The effective moment of inertia, I_e , was developed to provide a transition between the upper and lower bounds of I_g and I_{cr} as a function of the ratio M_{cr}/M_a . For conventionally reinforced (nonprestressed) members, the effective moment of inertia, I_e , shall be calculated by Eq. (9.1) unless obtained by a more comprehensive analysis.

Unless deflections are determined by a more comprehensive analysis, immediate deflection shall be computed using elastic deflection equations using the effective moment of inertia in Eq. 9.1 in CSA A23.3-14.

CSA A23.3-14 (9.8.2.3)

For continuous prismatic members, the effective moment of inertia may be taken as the weighted average of the values obtained from following equation for the critical positive and negative moment sections.

	<u>CSA A23.3-14 (9.8.2.4)</u>
$I_{e,avg} = 0.85 I_{em} + 0.15 I_{ec}$ for one end continuous	<u>CSA A23.3-14 (Eq. 9.3)</u>
$I_{e,avg} = 0.70 I_{em} + 0.15 (I_{e1} + I_{e2})$ for two ends continuous	<u>CSA A23.3-14 (Eq. 9.4)</u>

The values of the maximum moments for the three service load levels are calculated from structural analysis as shown previously. The following Figure shows the maximum moments for the total service load level.

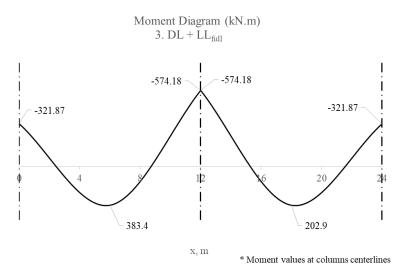


Figure 8 - Maximum Moments for the Total Service Load Level

For the negative moment region adjacent to the internal support:

The following calculations are based on considering the negative moment regions as rectangular sections. For T-beam, a T-shaped section can also be used to calculate I_{cr} in the negative moment regions. This approach will impact the calculations of I_g and M_{cr} where it has a slight impact on the instantaneous deflection results since the averaged effective moment of inertia is predominantly dependent on the properties of the mid-span region as can be seen later in this example. The hand calculations are continued with rectangular sections considered at the negative moment regions. A comparison between the two approaches is presented in "Design Results Comparison and Conclusions" section.

 M_{cr} = cracking moment.

$$M_{cr} = \frac{f_r I_g}{Y_t} = \frac{(3.00/2) \times (7.2 \times 10^9)}{300} \times 10^{-6} = 36 \text{ kN.m}$$

 f_r should be taken as half of Eq. 8.3 in CSA A23.3-14

 f_r = Modulus of rapture of concrete.

$$f_r = 0.6\lambda \sqrt{f_c} = 0.6 \times 1.0 \times \sqrt{25} = 3.00 \text{ MPa}$$

CSA A23.3-14 (Eq.8.3)

 I_g = Moment of inertia of the gross uncracked concrete section

$$I_g = \frac{b \times h^3}{12} = \frac{400 \times 600^3}{12} = 7.20 \times 10^9 \text{ mm}$$

 $y_t = \frac{h}{2} = \frac{600}{2} = 300 \text{ mm}$

 I_{cr} = moment of inertia of the cracked section transformed to concrete.

CAC Concrete Design Handbook 4th Edition (5.2.3)

CSA A23.3-14 (9.8.2.3)

The exterior span near the interior support is reinforced with 7 - 30M bars.

 E_c = Modulus of elasticity of concrete.

$$E_{c} = (3,300\sqrt{f_{c}} + 6,900) \left(\frac{\gamma_{c}}{2,300}\right)^{1.5} = (3,300\sqrt{25} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 25,684 \text{ MPa} \qquad \underline{CSAA23.3-14(8.6.2.2)}$$

$$n = \frac{E_{s}}{E_{c}} = \frac{200,000}{25,684} = 7.79 \qquad \underline{PCA \text{ Notes on ACI 318-11 (Table 10-2)}}$$

$$B = \frac{b}{nA_{s}} = \frac{400}{7.79 \times (7 \times 700)} = 0.01 \text{ mm}^{-1} \qquad \underline{PCA \text{ Notes on ACI 318-11 (Table 10-2)}}$$

$$kd = \frac{\sqrt{2dB+1}-1}{B} = \frac{\sqrt{2 \times 555 \times 0.01+1}-1}{0.01} = 243.7 \text{ mm} \qquad \underline{PCA \text{ Notes on ACI 318-11 (Table 10-2)}}$$

$$I_{cr} = \frac{b(kd)^{3}}{3} + nA_{s}(d-kd)^{2} \qquad \underline{PCA \text{ Notes on ACI 318-11 (Table 10-2)}}$$

$$I_{cr} = \frac{400 \times 243.7^3}{3} + 7.79 \times (7 \times 700) \times (555 - 243.7)^2 = 5.63 \times 10^9 \text{ mm}^4$$

For the exterior span (span with one end continuous) with total service load level:

$$I_{ec} = I_{cr} + \left(I_g - I_{cr}\right) \left(\frac{M_{cr}}{M_a}\right)^3 \text{, since } M_{cr} = 36 \text{ kN.m} < M_a = 461.71 \text{ kN.m}$$
CSA A23.3-14 (Eq. 9.1)

Where I_e^{-} is the effective moment of inertia for the critical negative moment region (near the support).

As mentioned earlier, midspan stiffness (including the effect of cracking) has a dominant effect on deflections, midspan region is heavily represented in calculation of I_e and this is considered satisfactory in approximate deflection calculations. The averaged effective moment of inertia ($I_{e,avg}$) is given by:

$$I_{e,avg} = 0.85 I_{em} + 0.15 I_{ec} \text{ for one end continuous}$$

$$CSA A23.3-14 (Eq. 9.3)$$

$$I_{e,avg} = 0.85 \times (3.01 \times 10^9) + 0.15 \times (5.63 \times 10^{10}) = 3.4 \times 10^9 \text{ mm}^4$$

Where:

 I_{e1} = The effective moment of inertia for the critical negative moment section at end 1 of continuous beam span. I_{e2} = The effective moment of inertia for the critical negative moment section at end 2 of continuous beam span.

The following Table provides a summary of the required parameters and calculated values needed for deflection calculation.

	Table 3 – Averaged Effective Moment of Inertia Calculations (<u>Rectangular</u> Sections at Negative Moment Regions)												
		Ig,	Icr,		M _a , kN.m		M _{cr} ,	I _e ,	mm ⁴ (×10) ⁹)	I _{e,avg}	, mm ⁴ (×1	0 ⁹)
Span	zone	mm^4 (×10 ⁹)	mm ⁴ (×10 ⁹)	D	D + LL _{Sus}	D + L _{full}	kN.m	D	D + LL _{Sus}	D + L _{full}	D	D + LL _{Sus}	D + L _{full}
	Left	7.20	4.48	-258.82	-258.82	-321.87	-36.00						
Ext	Midspan	15.20	2.87	235.19	235.19	292.48	52.62	3.01	3.01	2.94	3.40	3.40	3.35
	Right	7.20	5.63	-461.71	-461.71	-574.18	-36.00	5.63	5.63	5.63			

	Table 4 – Averaged Effective Moment of Inertia Calculations (<u>T-Shaped</u> Sections at Negative Moment Regions)												
~		Ig,	I _{cr} ,		M _a , kN.m		M _{cr} ,	I _e ,	mm ⁴ (×10) ⁹)	I _{e,avg}	g, mm ⁴ (×1	0 ⁹)
Span	zone	mm^4 (×10 ⁹)	mm ⁴	D	D +	D +	kN.m	D	D +	D +	D	D +	D +
		(×10)	(×10 ⁹)	D	LL _{Sus}	L _{full}		D	LL _{Sus}	L _{full}	D	LL _{Sus}	L _{full}
	Left	15.20	4.48	-258.82	-258.82	-321.87	-136.80						
Ext	Midspan	15.20	2.87	235.19	235.19	292.48	52.62	3.01	3.01	2.94	3.44	3.44	3.37
	Right	15.20	5.63	-461.71	-461.71	-574.18	-136.80	5.88	5.88	5.76			

After obtaining the averaged effective moment of inertia, the maximum span deflections for the continuous beam can be obtained from anyone of the selected three procedures, other procedures can be used too. For the case were the negative moment regions are considered as rectangular sections:

6.1.1. PCA Superposition Procedure:

PCA Notes on ACI 318-11

Flat Plate Design Example

For exterior span - service total load case:

In order to be consistent with the CSA A23.3 methods, the clear span length is used in all method for the calculation of the deflection.

$$\Delta_{fixed} = \frac{w \times l_n^4}{384 \times E_c \times I_{e,avg}}$$

Where:

 Δ_{fixed} = Deflection of beam assuming fixed end condition.

$$w = 37 + 3.84 = 40.84 \ kN/m$$

 $I_{e,avg}$ = The averaged effective moment of inertia = 3.40×10⁹ mm⁴

$$E_c = (3,300\sqrt{f_c} + 6,900) \left(\frac{\gamma_c}{2,300}\right)^{1.5} = (3,300\sqrt{25} + 6,900) \left(\frac{2,447}{2,300}\right)^{1.5} = 25,684 \text{ MPa} \quad \underline{CSA \ A23.3-14(8.6.2.2)}$$
$$\Delta_{fired} = \frac{40.84 \times 11,450^4}{25.4 \times 10^{-10}} = 21.27 \text{ mm}$$

$$\Delta_{fixed} = \frac{40.84 \times 11,450}{384 \times 25,684 \times 3.35 \times 10^9} = 21.27 \text{ mm}$$

$$\theta_L = \frac{M_{net,L}}{\Sigma K_c}$$

Where:

 θ_L = Rotation of the span left support.

 $M_{net,L}$ = 321.87 kN.m = Net negative moment of the left support.

 $\sum K_c$ = column stiffness = (1.27+1.22) × 10¹¹ N.mm = 2.49 × 10¹¹ N.mm (calculated previously).

$$\theta_L = \frac{321.87 \times 10^6}{2.49 \times 10^{11}} = 1.29 \times 10^{-3} \text{ rad}$$

$$\Delta \theta_L = \theta_L \left(\frac{l}{8}\right) \left(\frac{I_g}{I_{e,avg}}\right)$$

Where:

 $\Delta \theta_L$ = Midspan deflection due to rotation of left support.

$$\Delta \theta_L = 1.29 \times 10^{-3} \times \frac{11450}{8} \times \frac{7.20 \times 10^9}{3.35 \times 10^9} = 3.98 \text{ mm}$$

$$\theta_{R} = \frac{M_{net,R}}{\Sigma K_{c}} = \frac{0}{\Sigma K_{c}} = 0 \text{ rad}$$
$$\Delta \theta_{R} = \theta_{R} \left(\frac{l}{8}\right) \left(\frac{I_{g}}{I_{e,avg}}\right) = 0 \text{ mm}$$
$$\Delta_{Total} = \Delta_{fixed} + \Delta \theta_{R} + \Delta \theta_{L}$$

$$\Delta_{Total} = 21.27 + 3.98 + 0 = 25.25 \text{ mm}$$

Following the same procedure for dead service load level

$$\Delta_{DL} = 16.82 + 0.0 + 3.15 = 19.97 \text{ mm}$$

$$\Delta_{LL} = \Delta_{Total} - \Delta_{DL} = 25.25 - 19.97 = 5.28 \text{ mm} < \frac{l_n}{360} = \frac{11,450}{360} = 31.80 \text{ mm} \text{ o.k.} \qquad \underline{CSA \ A23.3-14 \ (Table \ 9.3)}$$

6.1.2. Simplified Superposition Procedure:

<u>Reinforced Concrete Mechanics and Design – 1st Canadian edition – J. MacGregor (Section9-4)</u>

For exterior span - service total load case:

$$\begin{split} M_o &= \frac{w \times l_n^2}{8} = \frac{40.84 \times 11.45^2}{8} = 735.12 \text{ kN.m} \\ M_m &= M_o + \frac{M_1}{2} + \frac{M_2}{2} = 735.12 - \frac{321.87}{2} - \frac{574.18}{2} = 292.48 \text{ kN.m} \\ \Delta_{Total} &= \frac{5}{48} \times \frac{l_n^2}{E_c \times I_{e,avg}} \times \left(M_m + 0.1 \times (M_1 + M_2)\right) \\ \Delta_{Total} &= \frac{5}{48} \times \frac{11.45^2}{25,684 \times 3.35 \times 10^9} \times \left(292.48 - 0.1 \times (321.87 + 574.18)\right) = 30.14 \text{ mm} \end{split}$$

Where:

$$M_o =$$
 Simple span moment at midspan $= \frac{w l_n^2}{8}$

 M_1 = Negative moment at the exterior support

 M_2 = Negative moment at the interior support

Following the same procedure for dead service load level

$$\Delta_{DL} = 24.81 \,\mathrm{mm}$$

$$\Delta_{LL} = \Delta_{Total} - \Delta_{DL} = 30.14 - 24.81 = 5.33 \text{ mm} < \frac{l_n}{360} = \frac{11,450}{360} = 31.80 \text{ mm} \text{ o.k.} \qquad \underline{CSA \ A23.3-14 \ (Table \ 9.3)}$$

6.1.3. CSA Simplified Procedure:

CAC Concrete Design Handbook- 4th Edition (6.3.1.1)

CAC Concrete Design Handbook- 4th Edition (Table 6.3(a))

This procedure is based on using Effective Moment of Inertia (Ie) and the midspan deflection may usually be used as an approximation of the maximum deflection:

$$\Delta = K \left(\frac{5}{48}\right) \frac{M \times l_n^2}{E_c \times I_e}$$

$$K = 1.2 - 0.2 \times \frac{M_o}{M_m}$$
CAC Concrete Design Handbook- 4th Edition (6.3.1.1)
CAC Concrete Design Handbook- 4th Edition (Table 6.3(a))

 M_m = The net midspan moment

$$M_o =$$
Simple span moment at midspan $= \frac{w l_n^2}{8}$

For exterior span - service total load case:

$$M_m = 292.48 \text{ kN.m}$$

 $\Delta_{DL} = 27.28 \text{ mm}$

$$M_o = \frac{w \times l_n^2}{8} = \frac{40.84 \times (11.45)^2}{8} = 735.12 \text{ kN.m}$$

$$K = 1.2 - 0.2 \times \frac{735.12}{292.48} = 0.697$$

$$\Delta_{Total} = 0.697 \times \frac{5}{48} \times \frac{292.48 \times 11.45^2}{25,684 \times 3.35 \times 10^9} \times 10^6 = 32.40 \text{ mm}$$

Following the same procedure for dead service load level

$$\Delta_{LL} = \Delta_{Total} - \Delta_{DL} = 32.40 - 27.28 = 5.12 \text{ mm} < \frac{l_n}{360} = \frac{11.45}{360} = 31.80 \text{ mm} \text{ o.k.} \qquad \underline{CSA \ A23.3-14 \ (Table \ 9.3)}$$

6.2. Time-Dependent (Long-Term) Deflections (Δ_{lt})

The additional time-dependent (long-term) deflection resulting from creep and shrinkage (Δ_{cs}) are estimated as follows. The results obtained from the PCA superposition procedure are used below, the same steps can be repeated to obtain the time-dependent deflections for the two other procedures.

$$\Delta_{cs} = \lambda_{\Delta} \times (\Delta_{sust})_{Inst}$$
PCA Notes on ACI 318-11 (9.5.2.5 Eq. 4)

The total time-dependent (long-term) deflection is calculated as:

$$\left(\Delta_{total}\right)_{lt} = \left(\Delta_{sust}\right)_{lnst} \times \left(1 + \lambda_{\Delta}\right) + \left[\left(\Delta_{total}\right)_{lnst} - \left(\Delta_{sust}\right)_{lnst}\right]$$

$$\underline{CSA \ A23.3-04 \ (N9.8.2.5)}$$

Where:

 $(\Delta_{sust})_{lnst}$ = Immediate (instantaneous) deflection due to sustained load, in.

$$\xi_s = \left[1 + \frac{s}{1 + 50\rho'}\right]$$
CSA23.3-14 (Eq.9.5)

 $(\Delta_{total})_{lt}$ = Time-dependent (long-term) total delfection, in.

 $(\Delta_{total})_{Inst}$ = Total immediate (instantaneous) deflection, in.

For the exterior span

 $\xi = 2$, consider the sustained load duration to be 60 months or more. <u>CSA A23.3-14 (9.8.2.5)</u>

 $\rho' = 0$, conservatively.

$$\lambda_{\Delta} = \frac{2}{1 + 50 \times 0} = 2$$

$$\Delta_{cr} = 2 \times 19.97 = 39.94 \text{ mm}$$

$$\Delta_{cs} + \Delta_{LL} = 39.94 + 5.28 \simeq 45.22 \text{ mm} \le \frac{l_n}{240} = \frac{11,450}{240} = 47.71 \text{ mm} \text{ o.k.}$$
 CSA A23.3-14 (Table 9.3)

$$(\Delta_{total})_{tr} = 19.97 \times (1+2) + (25.25 - 19.97) = 65.18 \text{ mm}$$

The previous deflection calculations are done considering a rectangular section in the negative moment regions. The same procedure can be followed to obtain the deflections values for the case where a T-shaped section is used in negative moment regions. Tables 9 and 10 in the comparison section show a results summary for both options.

7. Continuous Beam Analysis and Design – spBeam Software

<u>spBeam</u> is widely used for analysis, design and investigation of beams, and one-way slab systems (including standard and wide module joist systems) per latest American (ACI 318-14) and Canadian (CSA A23.3-14) codes. <u>spBeam</u> can be used for new designs or investigation of existing structural members subjected to flexure, shear, and torsion loads. With capacity to integrate up to 20 spans and two cantilevers of wide variety of floor system types, <u>spBeam</u> is equipped to provide cost-effective, accurate, and fast solutions to engineering challenges.

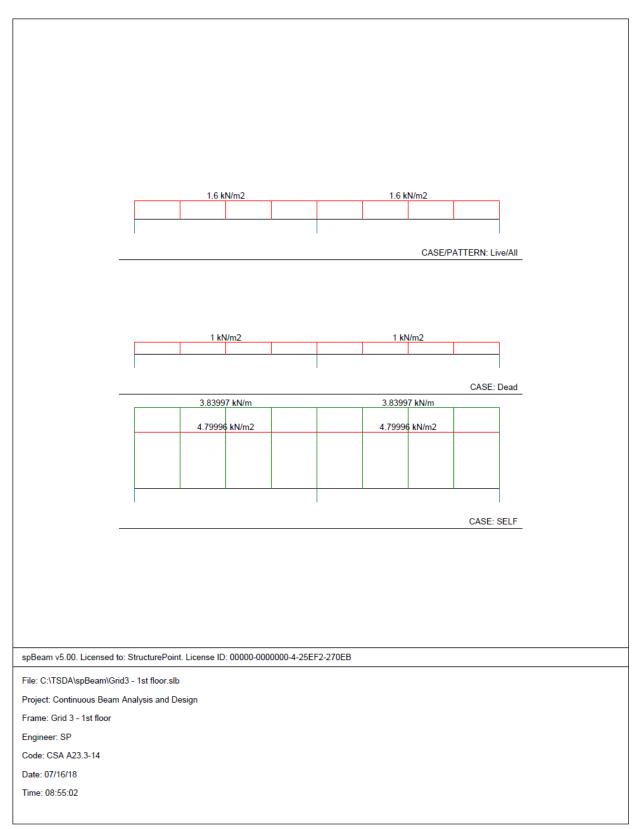
<u>spBeam</u> provides top and bottom bar details including development lengths and material quantities, as well as live load patterning and immediate and long-term deflection results. Using the moment redistribution feature engineers can deliver safe designs with savings in materials and labor. Engaging this feature allows up to 20% reduction of negative moments over supports reducing reinforcement congestions in these areas.

Beam analysis and design requires engineering judgment in most situations to properly simulate the behavior of the targeted beam and take into account important design considerations such as: designing the beam as rectangular or T-shaped sections; using the effective flange width or the center-to-center distance between the beam and the adjacent beams. Regardless which of these options is selected, <u>spBeam</u> provide users with options and flexibility to:

- 1. Design the beam as a rectangular cross-section or a T-shaped section.
- 2. Use the effective or full beam flange width.
- 3. Include the flanges effects in the deflection calculations.

□ Decremental Reinf. Design □ □ Combined M-V-T Reinf. Design □	Effective flange width Rigid beam-column joint Moment Redistribution	Span: Location: In	terior 💌	Length: Thickness:	12 m 200 mm	Width Left: Width Right:	2.5 m 2.5 m
Torsion Analysis and Design Torsion type Stir	rrups in flanges	Modify	Сору.				
Equilibrium	No				1		
C Compatibility C	Yes	Span No.	Location	Length	200	2.5	2.5
Deflection calculation options		2	Interior Interior	12 12	200	2.5	2.5
Sections to use in deflection calculations	are	<u> </u>					
C Gross (uncracked)	Effective (cracked)						
In negative moment regions, to calculate	lg and Mcruse		Beam	ns will be	designed	as T-sha	ped when
C Rectangular Section	T-Section				sions are		1
Calculate long term deflections Duration of load Su: 60 months 0	stained part of live load		ule si		sions are	uenneu	

Figure 9 – spBeam Modeling and Solve Options


Also two other important options can be used:

- 4. Invoke moment redistribution to lower negative moments
- 5. Using gross (uncracked) or effective (cracked) moment of inertia

For illustration and comparison purposes, the following figures provide a sample of the results obtained from an <u>spBeam</u> model created for the continuous beam on Grid 3 with effective flange width included in analysis, design and deflection calculations.

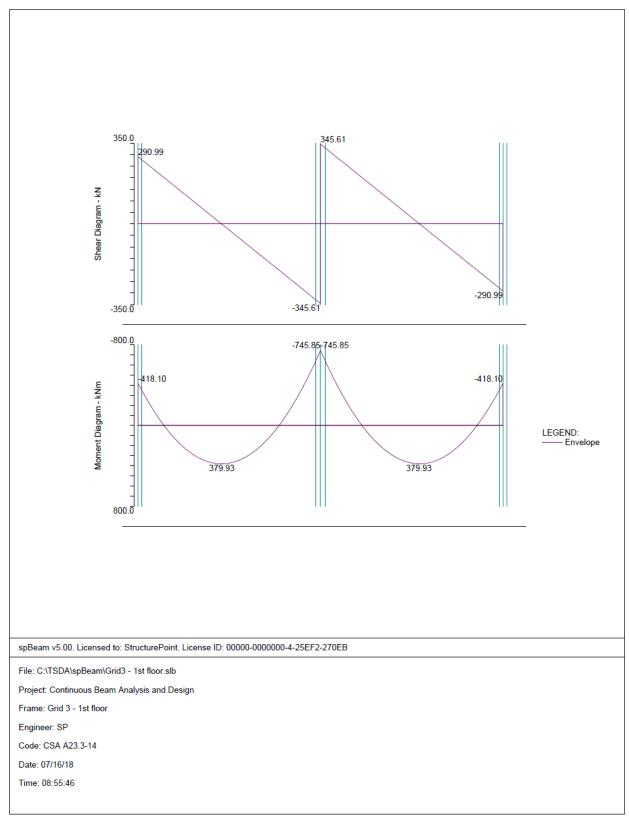
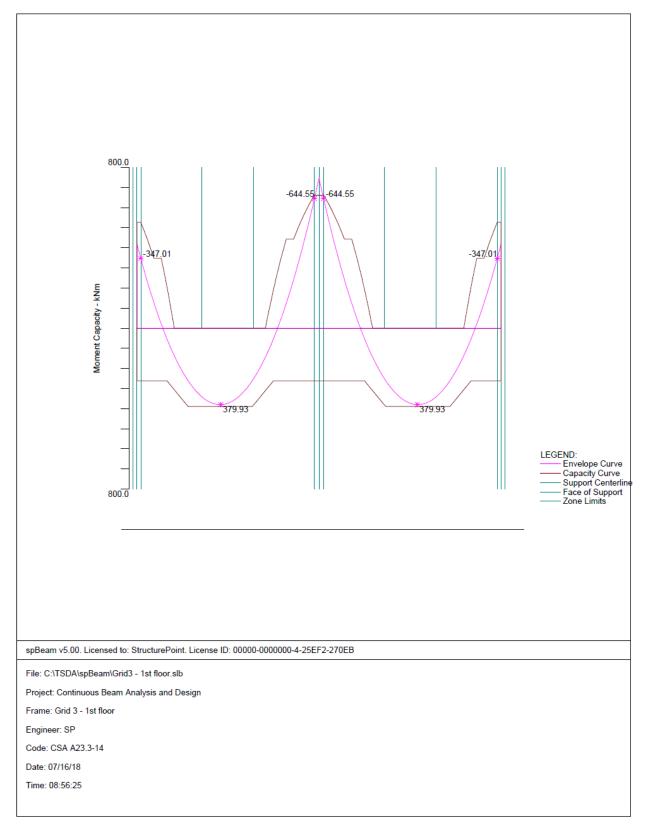



Figure 11 – Internal Forces (spBeam)

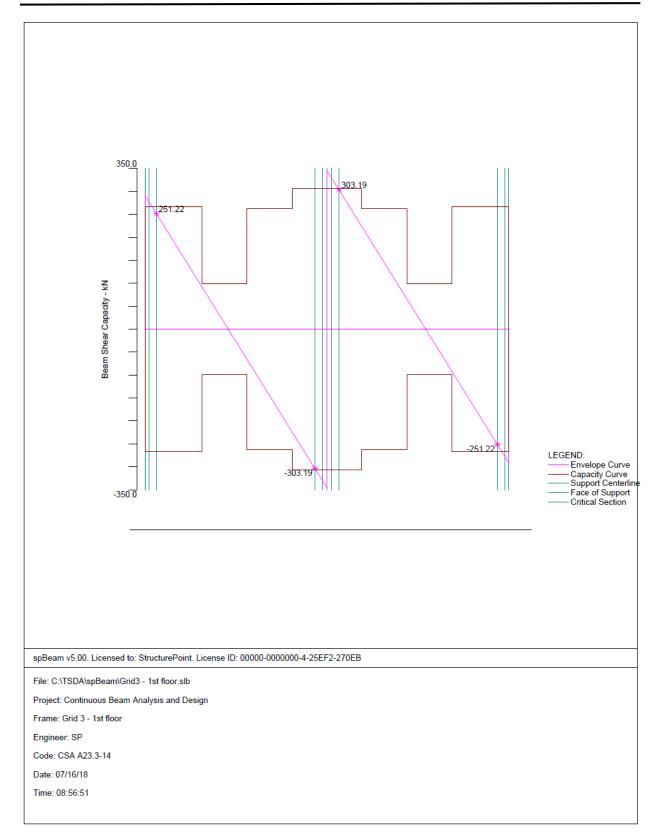


Figure 13 – Shear Capacity Diagram (spBeam)

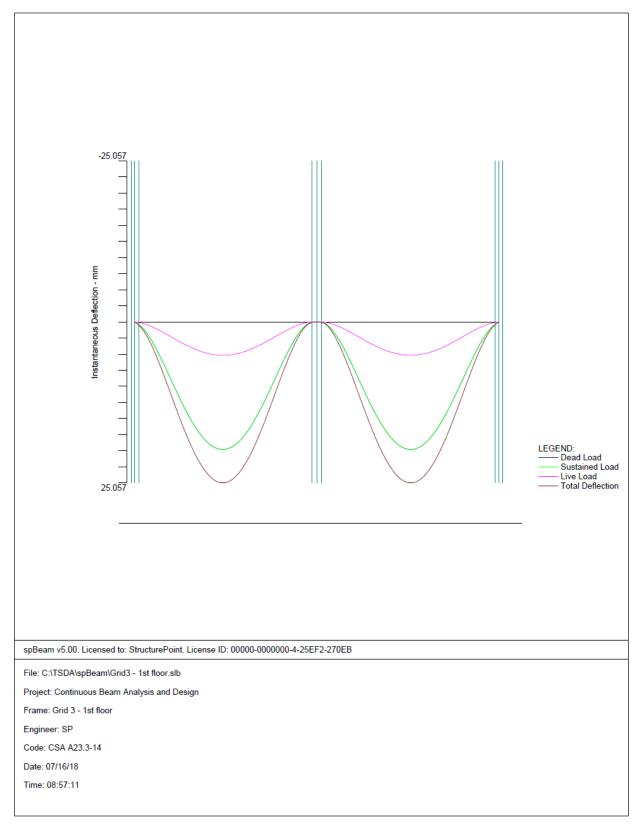


Figure 14 – Immediate Deflection Diagram (spBeam)

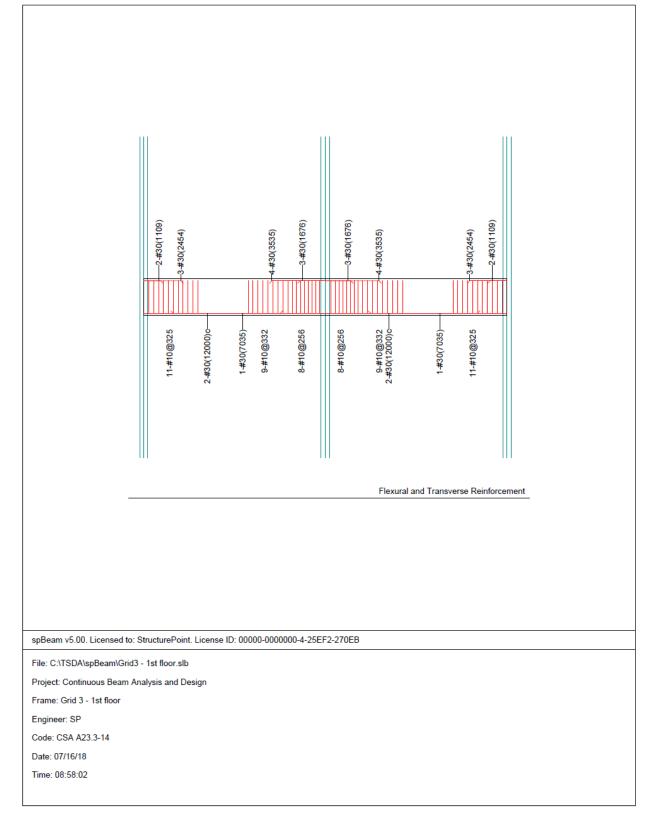


Figure 15 - Longitudinal and Lateral Reinforcement (spBeam)

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\spBeam\Grid3 - 1st floor.slb

07-16-2018, 08:58:27 AM

Page 1

		00 0 00 00000 00 00	00 00 00 00 00 00 000000 00	000000 00 00 00 00 000000 00 00 00 00 00 00 00 00	00 00 00 00 00000 00000	0 00 000000 00 00 00 00 00 00	00 00 00 00			
			ater Progra einforced C Copyrigh	spBea m for Analy concrete Bea t © 1992-20 All righ	am v5.00 (1 ysis, Desig ams and One 015, STRUC1 hts reserve	M) m, and Inv -way Slab CUREPOINT, d	estigati Systems LLC	lon of		
	be responsible for process: any warranty by the spBea program is n analysis, STRUCTUREPO:	stated abor ble for ei- ing by the y expressed : am program. not and can design ai INT disclain esign or en	ther the spBeam on hor implie Although S hot be on hd engins all res	accuracy omputer pr d with res TRUCTUREPO ertified : neering (ponsibility	or adequa rogram. Fu spect to INT has er infallible. documents y in contr	acy of th arthermore, the correc ideavored t The fina is t cact, negli	e mater STRUCI tness of o produce l and he li gence of	rial su TUREPOIN of the ce spBe only r icensee' or other	upplied IT neithe output eam error cesponsibi 's. Acco tort fo	as input r makes prepared free the lity for rdingly, r any
[1] INPUT										
File r Projec Frame: Engine Code: Reinfo Mode: Number Floor	ct: Continuo Grid 3 - 1: er: SP CSA A23.3-14	4 abase: CSA G s = 3 -Way/Beam	ysis and De							
Deflec In neg Long-t 0% of Compre Defaul Combir Moment Effect Rigid	ctions are be gative moment term deflect: ission reinfo t increments ted M-V-T rei tredistribut beam-column	ased on crack t regions, I ions are cal s sustained. proement cal al rebar des: inforcement (tion NOT sel- width calcul joint NOT se and design N	g and Mcr I culated for culations N ign selecte design NOT ected. ations sele elected.	NOT inclu load durat OT selected d. selected.	ude flange/ tion of 60		ibution	(if ava	ailable)	
	Properties									
		ams Col								
wc f'c Ec fr Precas	= 244 = 25 = 25	7.3 : 25 684	2447.3 kg/m 25 MPa 25684 MPa 3 MPa							
fy fyt Es		400 MPa, Bar: 400 MPa 000 MPa	s are not e	poxy-coated	i					
	ment Databa									
Units:	Db (mm), Al	== b (mm^2), Wb Ab 1	(kg/m) Nb Size	Db	Ab	Wb				
		100				2				
#20	20		2 #25		500	4				

Size	Db	Ab	Wb	Size	Db	Ab	Wb
#10	11	100	1	#15	16	200	2
#20	20	300	2	#25	25	500	4
#30	30	700	5	#35	36	1000	8
#45	44	1500	12	#55	56	2500	20

Span Data

CONCRETE SOFTWARE SOLUTIONS

censed to: \TSDA\spBe		ructureP						
			nt, Licen t floor.s		0000-00	00000-4-	25EF2-2	270EB
Slabs								
Units: L1 Span Loc		wR (m); L1	t	Hmin (mr wL	n) WR	bEff	Hn	nin
1 Int 2 Int	12 12		200 200					0 0
Ribs and								
Units: b,					Beam:	5	Spa	in
Span						8h		lmin
NOTES:			0			600 600		636 *b 636 *b
*b - Span	depti	h is les:	s than mi	nimum. De	eflect:	ion check	requir	ed.
pport Data								
Columns Units: cl Supp	a, c2a	a, c1b,	c2b (mm);	Ha, Hb	(m)	- 21-	111-	Devis
1 2 3	600 500	750 500	4.200 4.200 4.200		500 500 500	750 500	4.400 4.400 4.400	100 100 100
Boundary								
Units: Kz Supp S	(kN/r pring	nm); Kry Kz Sp:	ring Kry	Far End <i>l</i>				
1 2		0	0 0	Fixed Fixed Fixed				
3		0	0	Fixed	1 1	Fixed		
ad Data								
Load Case	SELF DEAD	Dead DEAD	Live LIVE					
Load Case Case Type	SELF DEAD	Dead DEAD	Live LIVE					
Load Case Case Type	SELF DEAD .250	Dead DEAD	Live LIVE					
Load Case Case Type U1 1 Area Load Units: Wa Case/Patt	SELF DEAD .250 s .(kN/r Span	Dead DEAD 1.250 n2)	Live LIVE 1.500 Wa					
Load Case Case Type U1 1 Area Load Units: Wa Case/Patt	SELF DEAD .250 .250	Dead DEAD 1.250 n2)	Live LIVE 1.500 Wa 4.80					
Load Case Case Type Ul 1 Area Load Units: Wa Case/Patt	SELF DEAD 250 s 	Dead DEAD 1.250 n2)	Live LIVE 1.500 Wa 4.80 4.80 1.00					
Load Case Case Type U1 1 Area Load Units: Wa Case/Pat SELF	SELF DEAD .250 s -(kN/r Span 1 2	Dead DEAD 1.250 n2)	Live LIVE 1.500 Wa 4.80 4.80					
Load Case Case Type Ul 1 Area Load Units: Wa Case/Pat SELF Dead Live Line Load	SELF DEAD 	Dead DEAD 1.250 n2)	Wa 4.80 1.00 1.60					
Load Case Case Type U1 1 Area Load 	SELF DEAD .250 s .(kN/r Span 1 2 1 2 1 2 1 2 5 , Wb Span	Dead DEAD 1.250 n2)	Wa 1.500 Wa 4.80 1.00 1.60 1.60 1.60 La, Lb (m Wa)	a	Wb		Lb
Load Case Case Type U1 1 Area Load 	SELF DEAD .250 s - (kN/r Span 1 2 1 2 1 2 1 2 5 5 5 5 5 5 5 5 5 5 5 5	Dead DEAD 1.250 n2) (kN/m), :	Wa 1.500 4.80 4.80 1.00 1.60 1.60 1.60) L-	a	Wlo		
Load Case Case Type UI 1 Area Load Units: Wa Case/Patt SELF Dead Live Line Load Live Units: Wa Case/Patt 	SELF JEAD 	Dead DEAD 1.250 n2) (kN/m), :	Wa 4.80 1.00 1.00 1.60 1.60 1.60 La, Lb (m Wa) L-	a	Wlo		
Load Case Case Type U1 1 Area Load Units: Wa Case/Patt SELF Dead Live Line Load 	SELF DEAD 	Dead DEAD 1.250 n2) (kN/m), :	Wa 4.80 1.00 1.00 1.60 1.60 1.60 La, Lb (m Wa) L-	a	Wlo		
Load Case Case Type Ul 1 Area Load 	SELF DEAD 	Dead DEAD 1.250 n2) (kN/m), : 	Wa 1.500 4.80 4.80 1.00 1.60 1.60 1.60 La, Lb (m Wa 3.84) 0.000 0.000	a 	Wb 3.84 3.84		
Load Case Case Type Ul 1 Area Load 	SELF DEAD 	Dead DEAD 1.250 n2) (kN/m), : ceria Top Min	Live LIVE 1.500 Wa 4.80 4.80 1.00 1.60 1.60 1.60 1.60 1.60 2.84 3.84 3.84 bars <u>Max</u>) 0.000 0.000 Bottor Min	a	WD 3.84 3.84		
Load Case Case Type U1 1 Area Load 	SELF DEAD 	Dead DEAD 1.250 m2) (kN/m), : teria fls 25 0.14 20	Live Live 1.500 Wa 4.80 4.80 1.00 1.60 1.60 1.60 1.60 1.60 1.60 1.6) 	a 0 1 5	₩b 3.84 3.84 3.84 457 mm ±15 ±57 mm .00 % mm	1	
Load Case Case Type U1 1 Area Load 	SELF DEAD 	Dead DEAD 1.250 m2) (kN/m), : teria fls 25 0.14 20	Live LIVE 1.500 Wa 4.80 4.80 1.00 1.60 1.60 1.60 1.60 1.60 2.84 3.84 3.84 bars <u>Max</u>) 	a 0 1 5	₩b 3.84 3.84 3.84 457 mm ±15 ±57 mm .00 % mm	1	

	Top	bars	Bottom	bars	Stir	rups
	Min	Max		Max	Min	Max
Bar Size	#30	#30	#30	#30	#10	#10

Page 2

CONCRETE SOFTWARE SOLUTIONS

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\spBeam\Grid3 - 1st floor.slb

Bar spacing	25	457	25	457	152	457 mm
Reinf ratio	0.14	5.00	0.14	5.00 %		
Cover	30		30	mm		
Layer dist.	25		25	mm		
No. of legs					2	6
Side cover					20	mm
1st Stirrup					76	mm
There is NOT	more than	300 mm	of concrete	below top	bars.	

07-16-2018, 08:58:27 AM

Page 3

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\spBeam\Grid3 - 1st floor.slb

07-16-2018,	08:58:42 AM
-------------	-------------

Page 1

				0000	000								
				00	00								
00	000	0000	000	00	00	000	000	000	000	0 000	00000	000	
00	0	00	00	00	00	00	00	0	00	00	00	00	
00		00	00	0000	0000	00	00	000	0000	00	00	00	
00	000	00	00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00	00	0000	00	00	00	00	00	00	
0	00	00		00	00	00	0	00	00	00	00	00	
00	000	00		0000	0000	000	000	000	0 000	00	00	00	(TM)

spBeam v5.00 (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams and One-way Slab Systems Copyright © 1992-2015, STRUCTUREPOINT, LLC All rights reserved _____

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spBeam computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spBeam program. Although STRUCTUREPOINT has endeavored to produce spBeam error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spBeam program. program.

[2] DESIGN RESULTS

Top Reinforcement

Units: Width Span Zone	(m), Mmax Width	(kNm), Xmax Mmax	(m), As Xmax	(mm^2), AsMin		AsReq	SpProv	Bars	
1 Left	1.60	347.01	0.250	1500	4979	2093	376	5-#30	*5
Midspan	1.60	0.00	5.975	0	4979	0	0		
Right	1.60	644.55	11.700	1500	4979	4692	251	7-#30	
2 Left	1.60	644.55	0.300	1500	4979	4692	251	7-#30	
Midspan	1.60	0.00	6.025	0	4979	0	0		
Right	1.60	347.01	11.750	1500	4979	2093	376	5-#30	*5
NOTES:									

*5 - Number of bars governed by maximum allowable spacing.

Top Bar Details

Units: Length (m)

	-	Left	t		Continuous		Rig		
Span -	Bars	Length	Bars	Length	Bars Length	Bars	Length	Bars	Length
1	3-#30	2.45	2-#30*	1.11		4-#30	3.53	3-#30*	1.68
2 NOTES:		3.53	3-#30*	1.68		3-#30	2.45	2-#30*	1.11

* - Bar cut-off location shall be manually checked for compliance with CSA A23.3, 11.2.13.

Top Bar Development Lengths

Units: Length (mm)

0	201901	- ()							
		Left	;		Continuous		Rigl	ht	
Span	Bars	Length	Bars	DevLen	Bars DevLen	Bars	DevLen	Bars	DevLen
1	3-#30	859.31	2-#30	859.31		4-#30	1376.20	3-#30	1376.20
2	4-#30	1376.20	3-#30	1376.20		3-#30	859.31	2-#30	859.31
ottom Re	inforce	ement							
Units:	Width	(m), Mmax	(kNm)	, Xmax (m)), As (mm^2), Sp	(mm)			

Во

B

					(mm^2), Sp AsMax		SpProv	Bars
1	0.40	379.93	5.517	600	23619	2048	152	3-#30
2	0.40	379.93	6.483	600	23619	2048	152	3-#30
Bottom Bar	Details							

Units: Start (m), Length (m)

	Lo	ong Bars	Sh	ort Bars		
Span	Bars	Start	Length	Bars	Start	Length

CONCRETE SOFTWARE SOLUTIONS

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\spBeam\Grid3 - 1st floor.slb

1 2-#30 0.00 12.00 1-#30* 1.97 7.03 2 2-#30 0.00 12.00 1-#30* 3.00 7.03 NOTES:

* - Bar cut-off location shall be manually checked for compliance with CSA A23.3, 11.2.13.

Bottom Bar Development Lengths

Inits: DevLen (mm)

Span	Long	n (mm) Bars DevLen		Bars DevLen
1	2-#30	1401.49	1-#30	1401.49

2 2-#30 1401.49 1-#30 1401.49

Flexural Capacity

Units: x (m), As (mm^2), PhiMn, Mu (kNm)

				Top				Bottom					
pan			PhiMn-		Comb				PhiMn+		Comb	Pat	Status
1			-526.44									A11	
	0.250	3500	-526.44	-347.01	U1	A11	OK	1400	261.14	0.00	U1	A11	OK
	1 109	2100	-348 04	-128 03	TT1	211	OK	1400	261 14	0 00	111		OV
	1.595	2100	-348.04	-21.56	U1	A11	OK	1400	261.14	0.00	U1	A11	OK
	1.968	1189	-208.83	0.00	01	A11	OK	1400	261.14	51.79	U1	A11	OK
	2.454	0	0.00	0.00	U1	A11	OK	1643	305.82	136.20	U1	A11	OK
	3.369	0	0.00	0.00	U1	A11	OK	2100	389.41	261.14	U1	A11	OK
	4.257	0	0.00	0.00	U1	A11	OK	2100	389.41	339.98	U1	A11	OK
	5.517	0	0.00						389.41	379.93		A11	
	6.000	0	0.00	0.00	U1	A11	OK	2100 2100	389.41	372.86	U1	A11	OK
	7.601	0	0.00 0.00 0.00	0.00	U1	A11	OK	2100	389.41	261.14	U1	A11	OK
	7.692	0	0.00	0.00	U1	A11	OK	2054	381.09	250.71	U1	A11	OK
	8.465	0	0.00	0.00	U1	A11	OK	1668	310.49	144.30	U1	A11	OK
	9.003	1093	-193.20	0.00	U1	A11	OK	1400	261.14 261.14	51.69	U1	A11	OK
	9.842	2800	-442.60	-123.51	01	A11	OK	1400	261.14	0.00	U1	A11	OK
	10.324	2800	-442.60	-241.06	U1	A11	OK	1400	261.14	0.00	U1	A11	OK
	11.700	4900	-661.94	-644.55	U1	A11	OK		261.14			A11	OK
	11.760	4900	-661.94	-664.43	U1	A11		1400	261.14 261.14	0.00	U1	A11	
	12.000	4900	-661.94	-745.85	U1	A11		1400	261.14	0.00	U1	A11	
2	0.000							1400	261.14	0.00	U1	A11	
	0.240	4900	-661.94					1400	261.14 261.14	0.00	U1	A11	
		4900					OK	1400	261.14	0.00	U1		
		2800							261.14			A11	
	2.158		-442.60			A11	OK	1400	261.14 261.14	0.00	U1	A11	OK
		1093	-193.20	0.00	U1	A11	OK	1400	261.14 310.49	51.69	U1		
												A11	OK
	4.307	0	0.00	0.00	U1	A11	OK	2054	381.09	250.71	U1	A11	OK
	4.399	0	0.00 0.00 0.00	0.00	U1	A11	OK	2100	389.41	261.14		A11	
	6.000	0				ALL	OK	2100	389.41	3/2.80	U1	A11	
	6.483	0	0.00	0.00	U1				389.41			A11	
	7.742	0	0.00	0.00					389.41			A11	
	8.631	0	0.00	0.00	U1	A11	OK	2100	389.41	261.14		A11	
			0.00	0.00	U1	All	OK	1643	305.82	136.20	U1	A11	
	10.032	1189							261.14			A11	
	10.405		-348.04	-21.56	U1	A11	OK	1400	261.14	0.00	U1	A11	
	10.891		-348.04	-128.03	U1	A11	OK	1400	261.14 261.14	0.00	U1	A11	
	11.750	3500	-526.44	-347.01	U1	A11	OK	1400	261.14	0.00	U1	A11	OK
	12.000	3500	-526.44	-418.10	U1	A11		1400	261.14	0.00	U1	A11	

Longitudinal Beam Transverse Reinforcement Demand and Capacity

Sectio	n Propert	ies			
Units: Span		Av/s (mm^ (Av/s)min		niVc, Vrmax Vrmax	(kN)
1 2	499.5 499.5	0.300	116.89 116.89		

Beam Transverse Reinforcement Demand

Units: Start, End, Xu (mm), Vu (m), Av/s (kN/mm^2)

				Requ	uired		Demand	
Span	Start	End	Xu	Vu	Comb/Patt	Av/s	Av/s	
1	0.326	2.243	0.750	251.22	U1/A11	0.554	0.554	
	2.243	3.736	2.243	172.02	U1/A11	0.227	0.300	*8
	3.736	5.229	3.736	92.82	U1/A11	0.000	0.000	
	5.229	6.721	6.721	65.59	U1/A11	0.000	0.000	
	6.721	8.214	8.214	144.79	U1/A11	0.115	0.300	*8
	8.214	9.707	9.707	223.99	U1/A11	0.442	0.442	
	9.707	11.624	11.200	303.19	U1/A11	0.768	0.768	

07-16-2018, 08:58:42 AM

Page 2

CONCRETE SOFTWARE SOLUTIONS

07-16-2018, 08:58:42 AM

Page 3

2	0.376	2.293	0.800	303.19	U1/A11	0.768	0.768
	2.293	3.786	2.293	223.99	U1/A11	0.442	0.442
	3.786	5.279	3.786	144.79	U1/A11	0.115	0.300 *8
	5.279	6.771	5.279	65.59	U1/A11	0.000	0.000
	6.771	8.264	8.264	92.82	U1/A11	0.000	0.000
	8.264	9.757	9.757	172.02	U1/A11	0.227	0.300 *8
	9.757	11.674	11.250	251.22	U1/A11	0.554	0.554

NOTES:

*8 - Minimum transverse (stirrup) reinforcement governs.

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\spBeam\Grid3 - 1st floor.slb

Beam Transverse Reinforcement Details

Units: spacing & distance (mm). Span Size Stirrups (2 legs each unless otherwise noted)

- 1 #10 11 @ 325 + <-- 2986 --> + 9 @ 332 + 8 @ 256 2 #10 8 @ 256 + 9 @ 332 + <-- 2986 --> + 11 @ 325

Beam Transverse Reinforcement Capacity

Units: Start, End, Xu (m), Vu, PhiVn (kN), Av/s (mm^2/mm), Av (mm^2), Sp (mm)

Units:	Start,	End, Xu	(m), Vu,	PhiVn (kN)), Av/s (mm Required	n^2/mm), 1	Av (mm^2),	Sp (mm)	Provid	led	
Span	Start	End	Xu	. Vu	Comb/Patt	Av/s	Reqd/Min	Av		Av/s	PhiVn
1	0.000	0.326	0.750	251.22	U1/A11						
	0.326	3.736	0.750	251.22	U1/A11	0.554	1.85	200.0	325	0.616	266.30
	3.736	6.721	3.736	92.82	U1/A11	0.000	0.00				99.61
	6.721	9.707	9.707	223.99	U1/A11	0.442	1.47	200.0	332	0.603	263.12
	9.707	11.624	11.200	303.19	U1/A11	0.768	2.56	200.0	256	0.783	306.76
	11.624	12.000	11.200	303.19	U1/A11						
2	0.000	0.376	0.800	303.19	U1/A11						
	0.376	2.293	0.800	303.19	U1/A11	0.768	2.56	200.0	256	0.783	306.76
	2.293	5.279	2.293	223.99	U1/A11	0.442	1.47	200.0	332	0.603	263.12
	5.279	8.264	8.264	92.82	U1/A11	0.000	0.00				99.61
	8.264	11.674	11.250	251.22	U1/A11	0.554	1.85	200.0	325	0.616	266.30
	11.674	12.000	11.250	251.22	U1/All						

Slab Shear Capacity

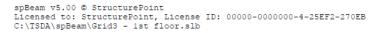
Units: Span			(mm),			Vu(kN) Vratio	PhiVc	Vu	Xu	
1	1	Not	check	 ed -	 					
		-								

2 --- Not checked ---

Material Takeoff

Reinforcement in the Direction of Analysis

Top Bars:	315.9	kg	<=>	13.16	kg/m	<=>	2.633	kg/m^2
Bottom Bars:	341.1	kg	<=>	14.21	kg/m	<=>	2.842	kg/m^2
Stirrups:	80.9	kg	<=>	3.37	kg/m	<=>	0.674	kg/m^2
Total Steel:	737.9	kg	<=>	30.75	kg/m	<=>	6.149	kg/m^2
Concrete:	27.8	m^3	<=>	1.16	m^3/m	<=>	0.232	m^3/m^2


CONCRETE SOFTWARE SOLUTIONS

spBeam v5.00 © StructurePoint Licensed to: StructurePoint, License ID: 00000-0000000-4-25EF2-270EB C:\TSDA\spBeam\Grid3 - 1st floor.slb 07-16-2018, 08:59:06 AM

Page 1

			000			
		000000 00	00 00 00000			
	00	00 00 000	00 00 00	000000	00 00	00
	00000	00 00 00	00 00 00 00	00 00	00 00	00
	0 00	00 00	00 00 0	00 00	00 00	00
	00000	00 000	0000 00000	00000 0	00 00	00 (IM)
			spBeam v5.00 (2			
		ter Program for	Analysis, Desig te Beams and One	yn, and Inve		£
		Copyright © 1	992-2015, STRUC	UREPOINT, 1		
			l rights reserve			
be respon for proce any warra by the sp program i analysis, STRUCTURE analysis, program.	sible for eit ssing by the nty expressed n Beam program. s not and cann design an POINT disclaim design or eng ULTS	her the accur spBeam comput or implied wit Although STRUCT ot be certif d engineeri s all responsi ineering docume	acy or adequa er program. Fr h respect to UREPOINT has er ied infallible ng documents bility in contr nts prepared in	acy of the rthermore, the correct ideavored to . The final is the ract, negligner connection	e material STRUCTUREP Cness of the oproduce sp land only he licens, gence or otl h with the	not and canno supplied as inpu DINT neither make e output prepare Beam error free th responsibility fo ce's. Accordingly ner tort for an use of the spBea
Units: Ig, Icr		m)				
	M+	ve	Ig	M-ve_		
	5200e+010 2.872 5200e+010 2.238 5200e+010 2.238	6e+009 52.62 5e+009 52.62 5e+009 52.62 6e+009 52.62	7.2000e+009 4.4 7.2000e+009 7.2000e+009 5.4 7.2000e+009 5.4 7.2000e+009 5.4 7.2000e+009 4.4	0.00000 5286e+009 5286e+009 0.00000	-36.00 -36.00 -36.00 -36.00	
2 Left 1. Midspan 1.	5200e+010 2.872 5200e+010 2.238	5e+009 52.62	7.2000000000000000000000000000000000000	1/002+005		
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val	5200e+010 2.238 ues are for pos	itive moments (om face).		
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val M-ve val Frame Effective	5200e+010 2.238 ues are for pos ues are for neg Section Proper	itive moments (ative moments (ties	tension at botto	om face).		
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val M-ve val Frame Effective	5200e+010 2.238 ues are for pos section Proper 	itive moments (ative moments (ties (kNm)	tension at botto tension at top :	om face). [ace).		
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val M-ve val Frame Effective Units: Ie, Ie,a	5200e+010 2.238 ues are for pos section Proper 	itive moments (ative moments (ties (kNm)	tension at botto tension at top :	om face). [ace).		
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val M-ve val Frame Effective 	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight Mma	itive moments (ative moments (ties (kNm) Dead x Ie	tension at botto tension at top : Load Level Sustained Mmax	om face). face). Ie Ie	Dead+Live	 Te
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective 	5200e+010 2.238 ues are for pos ues are for neg Section Proper- vg (mm^4), Mmax Weight Mma 0.850 235.1 0.150 -461.7 0.150 -461.7 0.550 235.1	itive moments (ative moments (ties (kNm) Dead 9 3.0107e+009 1 5.6293e+009 1 5.6293e+009 1 5.6293e+009 9 3.0107e+009	tension at botto tension at top : Load Level Sustained Mmax	m face). [ace). [ace). [ace]. [ace	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 2.9444e+0	 09 09 09 09
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight	itive moments (ative moments (ties (kNm) Dead 9 3.0107e+009 1 5.6293e+009 1 5.6293e+009 1 5.6293e+009 9 3.0107e+009	Load Level Sustained Mmax 235.19 3.0107e -461.71 5.6293e 3.4035e -461.71 5.6293e 235.19 3.0107e	m face). [ace). [ace). [ace]. [ace	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 2.9444e+0	 09 09 09 09
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Jnits: Ie, Ie,a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight Mma 0.850 235.1 0.150 -461.7 0.150 -461.7 0.50 235.1 ections	itive moments (ative moments (ties 	Load Level Sustained Mmax 235.19 3.0107e -461.71 5.6293e 3.4035e -461.71 5.6293e 235.19 3.0107e	Dim face). Tace). Te Mma 1009 292. 1009 -574.1 1009 -574.2 1009 -574.2 1000 -574.2 1009 -574.2 1009 -574.2 1009	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 2.9444e+0	 09 09 09 09
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl Extreme Instant	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight	itive moments (ative moments (ties 	Load Level Sustained Mmax 235.19 3.0107e- -461.71 5.6293e- 235.19 3.0107e- 235.19 3.0107e- 3.4035e- 3.4035e- 3.4035e-	Dim face). Face). Te Mma 1009 292.4 009 -574.1 009 -574.2 009 -574.3 009 -574.3 000 -574.3 00	Dead+Live ax 	
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a' Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl Extreme Instant Units: Def (mm Span Direction)	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight Mma 0.850 235.1 0.150 -461.7 0.150 -461.7 0.150 -461.7 0.850 235.1 ections aneous Frame De 0), Loc (m) Value De	itive moments (ative moments (ties (kNm) <u>Dead</u> 	Load Level Sustained Mmax 235.19 3.0107e -461.71 5.6293e 3.4035e -461.71 5.6293e 3.4035e -461.71 5.6293e 3.4035e orresponding Loa Live Unsustained	m face). face). Te Mma 1009 292. 1009 -574. 1009 -574. 1009 292. 1009 292. 1000 2000 2000 2000 2000 2000 2000 2000	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 2.9444e+0 3.3471e+0 Total Sustained	 09 09 09 09 09 09 09
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Direction	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight Mma 0.850 235.1 0.150 -461.7 0.150 -461.7 0.150 -461.7 0.150 235.1 ections aneous Frame De), Loc (m) Value De	itive moments (ative moments (ties 	Load Level	Dem face). Face). Te Te Te Mma 	Dead+Live	Dead+Live
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl. Extreme Instant Units: Def (mm Span Direction) 1 Down	5200e+010 2.238 ues are for pos ues are for neg Section Proper 	itive moments (ative moments (ties 	Load Level	Dem face). Face). Te Te Te Mma 	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 2.9444e+0 3.3471e+0 Total Sustained 19.86 5.860	Dead+Live 25.06 5.860
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl Extreme Instant Units: Def (mm Span Direction 1 Down Up	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight Mma 0.850 235.1 0.150 -461.7 0.150 -461.7 0.150 -461.7 0.850 235.1 ections aneous Frame De cetions aneous Frame De Def 19. Loc 5.8 Def 5.0 Loc 5.8	itive moments (ative moments (ties 	Load Level Sustained Mmax 235.19 3.0107e -461.71 5.6293e 3.4035e -461.71 5.6293e 3.4035e -461.71 5.6293e 3.4035e orresponding Loa Live Unsustained 5.20 5.860	Dim face). Face). Te Mma 1009 292. 1009 -574. 1009 -574. 1009 292. 1009 -574. 1009 -574. 1000	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 19.86 5.660 	Dead+Live 25.06 5.860
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl Extreme Instant Units: Def (mm Span Direction) 1 Down Up	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight Mma 0.850 235.1 0.150 -461.7 0.150 -461.7 0.150 -461.7 0.850 235.1 ections aneous Frame De cetions aneous Frame De Def 19. Loc 5.8 Def 5.0 Loc 5.8	itive moments (ative moments (ties 	Load Level Sustained Mmax 235.19 3.0107e -461.71 5.6293e 3.4035e -461.71 5.6293e 3.4035e -461.71 5.6293e 3.4035e orresponding Loa Live Unsustained 5.20 5.860	Dim face). Face). Te Mma 1009 292. 1009 -574. 1009 -574. 1009 292. 1009 -574. 1009 -574. 1000	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 19.86 5.660 	Dead+Live 25.06 5.860
2 Left 1. Midspan 1. Right 1. NOTES: M+ve val Frame Effective Units: Ie, Ie, a Span Zone 1 Middle Right Span Avg 2 Left Middle Span Avg tantaneous Defl Extreme Instant Units: Def (mm Span Direction) 1 Down Up 2 Down Up	5200e+010 2.238 ues are for pos ues are for neg Section Proper vg (mm^4), Mmax Weight Mma 0.850 235.1 0.150 -461.7 0.150 -461.7 0.150 -461.7 0.850 235.1 0.150 -461.7 0.150 -461.7 0.0.850 235.1 Def 19. Loc 5.8 Def 19. Loc 5.8 Def 19. Loc 6.1 Def 19. Loc 6.1 Def 9. Loc 6. Loc 6.1 Def 9. Loc 6. Loc	itive moments (ative moments (ties 	Load Level	Dim face). Face). Te Mma 1009 292. 1009 -574. 1009 -574. 1009 292. 1009 -574. 1009 -574. 1000	Dead+Live ax 18 2.9444e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 18 5.6290e+0 19.86 5.660 	Dead+Live 25.06 5.860

07-16-2018, 08:59:06 AM

Page 2

Long-term Deflection Factors

Time dependant factor for sustained loads = 2.000 Units: Astop, Asbot (mm^2), b, d (mm), Rho' (%), Lambda (-) M+ve M-ve

Span	Zone	Astop	b	d	Rho'	Lambda	Asbot	b	d	Rho'	Lambda
1	Midspan				0.000	2.000				0.000	2.000
2	Midspan				0.000	2.000				0.000	2.000

NOTES: Deflection multiplier, Lambda, depends on moment sign at sustained load level and Rho' in given zone. Rho' is assumed zero because Compression Reinforcement option is NOT selected in Solve Options.

Extreme Long-term Frame Deflections and Corresponding Locations

Units: Def (mm), Loc (m)

S

Span	Direction	Value	CS	cs+lu	cs+1	Total	
1	Down	Def	39.72	44.92	44.92	64.78	
		Loc	5.860	5.860	5.860	5.860	
	Up	Def					
		Loc					
2	Down	Def	39.72	44.92	44.92	64.78	
		Loc	6.140	6.140	6.140	6.140	
	Up	Def					
		Loc					

NOTES: Incremental deflections due to creep and shrinkage (cs) based on sustained load level values. Incremental deflections after partitions are installed can be estimated by deflections due to: - creep and shrinkage plus unsustained live load (cs+lu), if live load applied before partitions, - creep and shrinkage plus live load (cs+l), if live load applied after partitions. Total deflections consist of dead, live, and creep and shrinkage deflections. Structure Point CONCRETE SOFTWARE SOLUTIONS

8. **Design Results Comparison and Conclusions**

	Table 5 - Comparison of Moments and Flexural Reinforcement								
Location	$M_{f}^{*}, kN.m$		A _{s,req} , m	m ²	Reinforcement				
Location	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>			
Exterior Negative	418.1	418.1	2,092	2,093	5 – 30M	5 - 30M			
Positive	372.9	380.0	2,014	2,048	3 – 30M	3 - 30M			
Interior Negative	745.9	745.8	4,692	4,692	7 – 30M	7 – 30M			
* negative moments are taken at the faces of supports									

The following tables show the comparison between hand results and spBeam model results.

	Table 6 - Comparison of Shear and lateral Reinforcement								
Location	V_{f}	*, kN	$(A_v/s)_{req}, mm^2/mm$		Reinfor	V _r , kN			
Location	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>	Hand	<u>spBeam</u>	
Interior Negative	253.9	251.2	0.78	0.77	10M @ 250 mm	10M @ 256 mm	305.9	306.8	
* Shear values are taken at distance d _v from the faces of supports									

	Table 7 - Comparison of Section Properties (Rectangular Negative Moment Regions)								
	I _{cr} , mm	1 ⁴ (×10 ⁹)			I _{e,avg} , mr	$n^4 (\times 10^9)$			
Location	Hand	anDaam		Hand			<u>spBeam</u>		
	Hand	<u>spBeam</u>	DL	DL+LL _{sus}	Total	DL	DL+LL _{sus}	Total	
Exterior Negative	7.20	7.20							
Positive	15.20	15.20	3.40	3.40	3.35	3.40	3.40	3.35	
Interior Negative	7.20	7.20							

	Table 8 - Comparison of Section Properties (<u>T-shaped</u> Negative Moment Regions)								
	I _{cr} , mm	1 ⁴ (×10 ⁹)			I _{e,avg} , mr	$n^4 (\times 10^9)$			
Location	Hand	anDaam		Hand <u>spBeam</u>					
	Hand	<u>spBeam</u>	DL	DL+LL _{sus}	Total	DL	DL+LL _{sus}	Total	
Exterior Negative	4.48	4.48							
Positive	2.87	2.87	3.44	3.44	3.37	3.44	3.44	3.37	
Interior Negative	5.63	5.63							

Table 9 - Comparison of Maximum Defle	ection (<u>Rectangular</u> Negative Mo	ment Regions)
Procedure	$\Delta_{ m inst}$, mm	$\Delta_{\rm lt},{ m mm}$
<u>spBeam</u>	25.06	64.78
PCA Superposition	25.25 (+0.8%)	65.18
Simplified Superposition	32.41 (+29.3 %)	86.97
PCA Simplified	31.38 (+25.2 %)	81.01

Table 10 - Comparison of Maximum De	flection (T-shaped Negative Mon	nent Regions)
Procedures	$\Delta_{\text{inst}}, \text{mm}$	$\Delta_{\rm lt},\rm mm$
spBeam	24.93	64.28
PCA Superposition	29.50 (+18.3 %)	75.92
Simplified Superposition	32.22 (+29.2 %)	86.19
PCA Simplified	31.20 (+25.1 %)	80.29

The results of all the hand calculations used illustrated above are in agreement with the automated exact results obtained from the <u>spBeam</u> program except for deflection (see section 8.2 for detailed discussion).

8.1. Deflection calculation methods:

Deflections calculations in reinforced concrete structures can be very tedious and time consuming because of the difficulty of accounting for the actual end boundary conditions in a building frame. As a result, numerous methods to estimate the deflection and the member stiffness have been presented in literature. It is important to note that these methods can only estimate deflections within an accuracy range of 20% to 40% as can be seen in Tables 9 and 10. It is important for the designer to be aware of this broad range of accuracy, especially in the modeling, design, and detailing of deflection-sensitive members.

spBeam uses elastic frame analysis (stiffness method) to obtain deflections along the beam span by discretizing the beam span into 110 elements. It also takes into account the adjacent spans effects, shape effects, supporting members stiffnesses above and below the beam, and cracked section effects based on the applied forces. This level of detail provides the maximum accuracy possible compared with other approximate methods used to calculate deflections.

In tables 9 and 10, the deflection value calculated by <u>spBeam</u> is lower than all the other values calculated by the approximate methods. This can be expected since approximate methods have a built-in conservatism to accommodate a wide range of applications and conditions. The designer can use <u>spBeam</u> and exploit its numerous features to get a closer deflection estimate and optimize the depth and size of the beam or slab under consideration.

9. Boundary condition effects on continuous beam deflections

Boundary conditions can have significant effects on the behavior of continuous beams especially deflections. This section focuses on investigating boundary conditions commonly found in building and used with continuous

beams. In each section we will explore when to use each condition, and how to properly model them using <u>spBeam</u>.

The following discussion provides recommendations for each of the grids in the building floor system under consideration, observations on the impact of the condition, and the proper modeling method in <u>spBeam</u>.

9.1. Beam supported by columns- Grid 3

The length and size of the columns above and below the beam are modeled allowing <u>spBeam</u> to calculate the rotational stiffness for each member at the joint to correctly determine the beam end moments.

In the support date, the stiffness % of 100 indicates full utilization of the column and beam geometry. Whereas a value of 999 will impose a fixed support condition and a value of zero will impose a pinned support condition ignoring the supporting columns entirely.

upport Data	1						>
Columns C	olumn Cap	oitals Trar	nsverse Bear	ms Bounda	y Conditions		
Support: Stiffness sha	1 re %:		Above: Below:	Height (m) 4.2 4.4	c1 (mm) 500 500	c2 (mm) 500 500	
Modify		Сору					
Sup. No	Stiff%	HtA	c1A	c2A	HtB	c1B	c2B
1	100	4.2	500	500	4.4	500	500
2	100 100	4.2 4.2	600 500	750 500	4.4 4.4	600 500	750 500
					ОК	Cancel	Help

Figure 16 - Beam Supported by Columns - Defining Supports Geometry (spBeam)

9.2. Beam supported by transverse beams - Grid 4

To model transverse beam as a support, the cross-sectional dimensions and length **<u>should not</u>** be entered as shown below since this tab is reserved for two-way slab systems with beams between all supports.

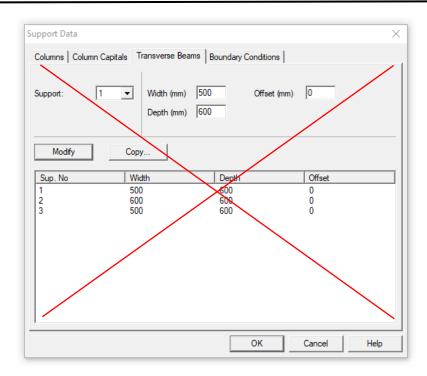


Figure 17 – Beam Supported by Transverse Beams – Defining Supports Geometry for two-way Slab systems (spBeam)

Alternately, the designer should enter a value for the rotational stiffness for the supporting transverse beams calculated by an external method if desired and to provide additional flexibility for special cases as the boundary conditions tab shown below.

The CSA code approximates the moment at transverse beam end support to 2/3 the moment at column end support. This can be used as a reference to find the rotational stiffness of transverse beams by trial and error.

CSA A23.3-14 (Table 9.1)

For Grid 4, adding the approximated rotational stiffnesses shown in the following Figure will result in (276 kN.m) negative moment at the end support which is 2/3 the negative moment at the end support for Grid 3 (418.1 kN.m).

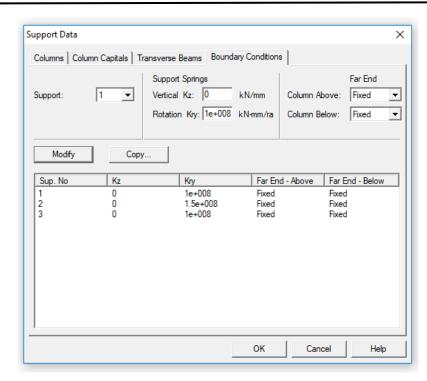


Figure 18 - Beam Supported by Transverse Beams - Defining Supports Stiffnesses (spBeam)

<u>spBeam</u> designs the beam for the moment at the center of the support when a rotation stiffness is defined. To design the beam for moments at the face of the supporting transverse beam, a dummy column can be defined with all parameters equals to zero except c_1 where it should be set equal to the width of the transverse beam. spBeam will obtain shear and moment values at critical sections and use them for design.

In Grid 2, a combination of the boundary conditions shown in grids 3 and 4 should be utilized where the end columns are modeled for support 1 and 3 and a transverse beam is modeled for support 2 as shown below.

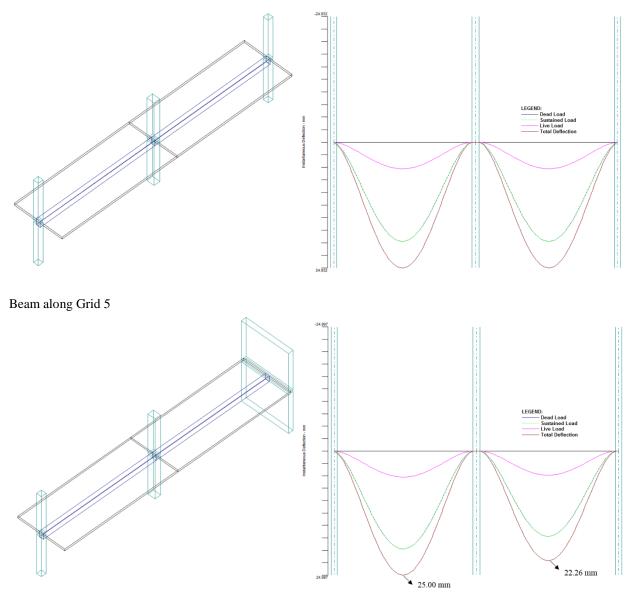
9.3. Beam supported by transverse walls - Grid 5

In this model the beam is cast monolithically with the shear wall, the wall define as an elongated column.

9.4. Beam supported by masonry bearing walls - Grid C

The wall can be modeled as pin support with a stiffness percent of zero.

9.5. Beam supported by longitudinal walls - Grids 1, 6, and A


The beam can be modeled up to the face of the wall. At the face of the wall the beam should be restrained by a fixed support and the wall width can be ignored.

To illustrate the effects of boundary conditions, beams along grids 2, 3, 4 and 5 in Figure 1 are modeled using <u>spBeam</u> and deflections obtained from these models are compared.

	Table 12 - Comparison of Continuous Beams with Different Boundary Conditions (Deflections)						
Grid #	$(\Delta_{ m inst})_{ m total}, \ mm$	$\Delta_{\rm cs}$, mm	Δ_{lt} , mm	Notes			
3	24.93	39.35	64.28	All columns are modeled with the exact geometry			
5	22.26 (-10.7 %)	34.9 (-11.3 %)	57.06 (-11.2 %)	Transverse shear wall is modeled with the exact geometry for the right span			
2	34.68 (+39.1 %)	54.14 (+37.6 %)	88.82 (+38.2 %)	The middle support is modeled as transverse beam using rotational stiffness with dummy column to obtain shear and moment values at the critical sections.			
4	40.38 (+62.0%)	63.59 (+61.6 %)	103.97 (+61.7 %)	All supports are modeled as transverse beams using rotational stiffness with dummy columns to obtain shear and moment values at the critical sections.			

Beam along Grid 3

Beam along Grid 2 LEGE Sustan. Live Loa Instantaneous Defection 34.682 Beam along Grid 4 LEGEND E Dead Load Sustained Load Live Load